
Carnegie Mellon University, Fall 2023
11-667: Large Language Models

Assignment 2, Due Tuesday, October 24th at 2 PM
Creators: Yiming Zhang and Clement Fung

In this homework, you will implement and train a decoder-only transformer model
from scratch. You will use your trained language model for text generation and
sentiment analysis. You will gain an understanding of implementation details and
training methods for transformers.

Instructions

This homework will be graded in two parts. You will be asked qualitative questions
about your implementation and are expected to share insights after exploring differ-
ent implementation trade-offs; these questions do not require code submissions and
are marked as (Written). You must fill out the answers in this Latex template, and
include it in your .zip submission.

Your code implementations will also be graded with unit tests (all the tests are
provided to you); these questions are marked as (Coding). You will be expected to
submit your code, which will be checked for plagiarism.

Prepare a submission [andrew-id].zip file with the following files:

1. Code files: model.py, train.py, generate.py, classify.py

2. Final model checkpoint model.pt (See question 2.6)

3. PDF of your written answers

0 Setting up the Environment [0 points]

To start, follow the instructions in starter code to setup the AWS instance and the
development environment. The test case in test env.py should be passing.

1 Implementing a Decoder-only Transformer Model

[35 points]

Figure 1: Transformer decoder

You will first implement a decoder-only trans-
former model. An outline of the code is
provided for you in model.py. This out-
line contains all the class and function dec-
larations that are expected for the submis-
sion. Do not modify the classes, func-
tions, or their arguments. Do not im-
port new Python dependencies. This may
break the automatic code test pipeline
and result in failed unit tests. You
should aim to have an efficient implemen-
tation for the model to train in a reason-
able amount of time. This means call-
ing PyTorch functions whenever possible, and
also means that you should not write ma-
trix operations using a for loop. That said,
you may not use layers or functions (e.g.,
torch.nn.TransformerDecoder) that make im-
plementation trivial. If you are unsure whether
using something is acceptable, ask course
staff.

Recall the Transformer Decoder from Lecture
2, shown in Figure 1. There are four classes within
the transformer that you are expected to imple-
ment:

1. MultiHeadAttention - the “Masked Multi-head Attention” module.

2. FeedForward - the “Feed Forward” module.

3. DecoderBlock - a single decoder block, as described in “The Decoder Step-by-
Step” in Lecture 2. Note that since we are implementing the decoder only, you
do not need to implement the Encoder-Decoder Multi-Head Attention or the
second “Add & Norm” operation.

4. DecoderLM - the full decoder model: the embedding step, multiple decoder
blocks, and the final output logits.

[Question 1.1] (Written, 5 points): Press and Wolf (2017) propose a weight tying
technique for projecting hidden states of a language model to token logits. Read this
paper, and in a few sentences, explain what weight tying does.

Write your answer here:

[Question 1.2] (Written, 5 points): Let d be the hidden size of the model, v be
the vocab size, b be the batch size, and s be the sequence length. Suppose you have
hidden states h ∈ Rb×s×d and token embeddings E ∈ Rv×d stored in PyTorch tensors.
Write one line of Python code (potentially calling functions in PyTorch) that com-
putes the token logits using weight tying.

Write your answer here:

[Question 1.3] (Coding, 25 points): Complete model.py, implementing all of the
classes above. All the unit tests are provided in the test script test model.py. Your
implementation will be awarded points for each of the five unit tests that pass.

2 Training the Transformer [85 points]

Now that you have implemented the transformer, it is time to train the model! For
ease of implementation and testing, we will provide the tokenized input for you. We
will train on a subset of the C4 corpus1, which is itself a subset of the Common Crawl
web corpus2. This dataset is downloaded automatically as a part of the training
script, and there is no need for you to access it manually.

An outline of the code is provided for you in train.py. Keep in mind the var-
ious hyperparameters that are relevant for training: batch size, learning rate (and
its scheduler), gradient accumulation, etc. These hyperparameters are read from a
configuration file. We have provided sample configuration files for you for adjusting
the hyperparameters. There are five functions that you are expected to implement:

1. train - the main training loop.

1https://huggingface.co/datasets/allenai/c4
2https://commoncrawl.org/

https://aclanthology.org/E17-2025/
https://huggingface.co/datasets/allenai/c4
https://commoncrawl.org/

2. random batch sampler - a data sampling function used in training that yields
randomly shuffled batches of the data.

3. sequential batch sampler - a data sampling function used in validation that
yields a sequential pass through the data.

4. cosine lr schedule - learning rate scheduler with Cosine annealing (see ques-
tion 2.2).

5. compute language modeling loss - the loss function used for training and
evaluating the model.

[Question 2.1] (Coding, 20 points): Complete train.py, implementing the above
functions. All the unit tests are provided in the test script test train.py. Your
implementation will be awarded points for each of the five unit tests that pass.

[Question 2.2] (Written, 10 points): Cosine annealing with warmup is a commonly
used dynamic learning rate strategy in training neural nets. It has two phases, in the
warmup phase where t ∈ [0, a), the learning rate increases linearly from 0 to lrmax.
In the annealing phase where t ∈ [a, b), the learning rate decays from lrmax to lrmin

following a half-cosine curve. When t ≥ b, the learning rate stays at lrmin. Figure 2
shows an example of this schedule.

Figure 2: Example Cosine Schedule

Using the symbols provided, write down two expressions, one for the learning rate
during warmup and one for the learning rate during annealing.

Write your expression for cosine annealing here:

Why would one want to use cosine annealing? What are some advantages of cosine
annealing over a constant learning rate? Write your answer here:

[Question 2.3] (Written, 10 points): What is the validation loss after training with
the configuration provided in GPT-tiny.yaml? For approximately how many training
steps should the model be trained to achieve optimal performance? Report the train-
ing loss curve (use a screenshot from weights & biases: https://wandb.ai/site).

Write the validation loss for GPT-tiny here:

Write the number of training steps needed for GPT-tiny here:

Include your training curve for GPT-tiny below:

https://wandb.ai/site

Figure 3: Broken training cases: case-1 and case-2

[Question 2.4]: (Written, 5 points) Figure 3 shows two mis-configured training runs,
compared against their expected case with the proper configuration. For case-1 and
case-2, in only a couple sentences each, can you explain what is wrong with the train-
ing setup? The loss function and transformer implementations are correct.

Write your answer here for case-1:

Write your answer here for case-2:

[Question 2.5] (Written, 20 points): Next, you will perform hyperparameter tuning.
When optimizing neural networks, a common way to measure the total computation
needed is with floating-point operations (FLOPs). E.g., a single multiply-add of floats
is counted as a FLOP. Assume that you have a compute budget of 1e+15 FLOPs for
training. Experiment with your model and training hyperparameters to find the best
configuration when training with at most 1e+15 FLOPs (the code for computing the
number of FLOPs used to train a model is provided in train.py). Note that the
FLOP limit is intentionally low: it should not take more than 10 minutes per hyper-
parameter test.

As long as you stay within the FLOP budget, you are free to modify any of the
following hyperparameters, all of which affect the number of FLOPs used: model
hyperparameters such as n embd, n head, n positions and n layer; and train-
ing hyperparameters such as batch size, seq len, grad accumulation steps, and
num training steps. Describe your experiment: report results for at most five hy-
perparameter results: describe what hyperparameter values are modified, and their
resulting validation perplexity (PPL). For your best performing setting, report the
final configuration (YAML file) for this setting.

Report your experiment procedure and results here:

Paste your final YAML configuration here:

[Question 2.6] (Coding, 20 points): Using the model configuration reported above,
train your final model. For training your final model, you may train 100x more FLOPs
(i.e. up to 1e+17 FLOPS), but do not change your model hyperparameters. Your
final model should be able to achieve a PPL under 50 on the validation set. Please
include your final model checkpoint model.pt in your submission. We will verify your
model with an offline correctness test, which will measure the perplexity on a test
dataset (not provided). Submissions with PPL under 50 are guaranteed to get full
score, and we will relax this requirement if needed.
Report your final validation loss and PPL:

3 Using the Language Model for Downstream Tasks

[40 points]

Text Generation

Next, you will use your trained LLM to generate text. An outline of the code for
text generation is provided for you in generate.py. To generate text, prompts must
be provided to the LLM; we have provided an input file prefixs.json with sample
inputs.

There are two functions that you are expected to implement:

1. generate - given a DecoderLM and a list of prompts, generate tokens.

2. softmax with temperature - convert a given a set of logits into probabilities
with the softmax function, using temperature.

[Question 3.1] (Coding, 10 points): Complete generate.py, implementing the
above functions. One unit test are provided in the test script test generate.py.
Your implementation will be awarded points for passing the unit test and correctly
implementing generate.

[Question 3.2] (Written, 5 points): Using the three prefixes provided in prefixs.json,
report generations from the prompts. Repeat this process, experimenting with dif-
ferent temperature values and prompts. What happens to the generations if the
temperature is near zero, or near one? Do you notice anything interesting with the
generated text?

Report your generations here:

Write your answer here:

[Question 3.3] (Written, 5 points): Beyond adjusting hyperparameters for sampling,
how can the quality of generation be improved? Provide at least two suggestions for
how generation quality can be improved and reasons why you expected an improve-
ment.

Write your answer here:

Sentiment Analysis

Finally, your trained LLM can be used to perform sentiment analysis. An outline of
the code for sentiment analysis is provided for in classify.py. To evaluate sentiment
analysis, use the Yelp polarity dataset: a labelled dataset of positive/negative Yelp
reviews. During inference, you will place the text into a Yelp text template and
determine if the token “good” or “bad” is more likely.
There are two functions that you are expected to implement:

1. score - score the next token given a list of prefix strings.

2. classify binary sentiment - given a DecoderLM and a set of input texts,
predict if the input texts are ”positive” reviews.

[Question 3.4] (Coding, 10 points): Complete classify.py, implementing the
above functions. One unit test are provided in the test script test classify.py.
Your implementation will be awarded points for passing the unit test and correctly
implementing score.

[Question 3.5] (Written, 5 points): Report the classification accuracy on the Yelp
polarity dataset without calibration. Is the performance higher than random (50%)
or majority class (53.1%)? Explain why this is the case.
Classification accuracy without calibration:

Write your answer here:

[Question 3.6] (Written, 5 points): When applying language models directly to
classification, the model can often be miscalibrated. An example of a model biased to
the positive label is shown in Figure 4. Assuming there are roughly the same number
of positive and negative examples in the dataset, how can you find a better decision
boundary for a miscalibrated model than the default value (0.5) without access to
labels or a separate development set? In other words, your calibration strategy should
depend exclusively on the predicted p(Positive) for all test instances.

Under this new decision boundary you came up with, report the classification ac-
curacy on the Yelp polarity dataset. Other than training a bigger model or training for
longer, what are some other potential ways to improve the classification performance?

Figure 4: A miscalibrated classifier that is biased to the positive class, taken from
Zhao et al. (2021). Negative groundtruth examples are marked with , and positive
groundtruth examples are marked with . Note: This figure is for illustration, and
the plotted distribution will likely be different from the actual outputs of your model.

Your proposed method of computing the calibrated decision boundary:

Classification accuracy with calibration:

https://arxiv.org/abs/2102.09690

Other ways to improve classification performance:

4 Optional: Give us Feedback

Was this homework enjoyable? Was it too easy or too hard? Do you have any
suggestions for making the homework run more smoothly? Giving us feedback is
completely optional and will not factor into your grade.

	Setting up the Environment [0 points]
	Implementing a Decoder-only Transformer Model [35 points]
	Training the Transformer [85 points]
	Using the Language Model for Downstream Tasks [40 points]
	Optional: Give us Feedback

